Comparison of the effects of amitriptyline, melipramine and fluoxetine on acquisition and spatial alteration of avoidance responses in rats
PDF

Keywords

rats
amitriptyline
melipramine
fluoxetine
avoidance

How to Cite

1.
Inozemtsev AN, Hashimova UF, Lovat ML, Karpukhina OV, Ismayilova KY, Rustamov FE, Gumbatov SI. Comparison of the effects of amitriptyline, melipramine and fluoxetine on acquisition and spatial alteration of avoidance responses in rats. Azerb. J. Physiol. 2023;38(1):5-12. doi:10.59883/ajp.53

Abstract

The effects of amitriptyline (10 mg/kg), melipramine (10 mg/kg), and fluoxetine (5 mg/kg) on the acquisition of conditioned active avoidance responses and their spatial alteration in rats were studied. During the acquisition of avoidance, a passage in the partition was open, adjacent to the rear wall of the shuttle chamber. On the 5th experimental day after the end of the training, this distal opening was closed and the proximal one was opened, after which avoidance performance under changed conditions was tested for 20 trials. Melipramine and amitriptyline accelerated the acquisition of avoidance responses. Changing the location of the opening disrupted the learned skill, especially in the control animals. Melipramine and fluoxetine statistically significantly (in contrast to amitriptyline) accelerated the recovery of the level of avoidance. The positive effect of melipramine and fluoxetine is explained by a psychostimulating component in their spectrum. The inability of amitriptyline to produce a significant effect in this model is due to its psychosedative properties. The data obtained allow us to conclude that the acquisition of the active conditioned avoidance responses and their spatial modification can be used to analyze the antidepressant activity of pharmacological agents.

https://doi.org/10.59883/ajp.53
PDF

References

Андреева НИ. Методические указания по изучению антидепрессантной активности фармакологических веществ. Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ. Ред. Хабриев Р.У. М.: Медицина; 2005. с. 244-253. [Andreeva NI. Guidelines for the study of the antidepressant activity of pharmacological substances. Guidelines for the experimental (preclinical) study of new pharmacological substances. Ed. R.U. Khabriev M.: Medicine; 2005. p. 244-253. (in Russian)]

Воронина ТА, Островская РУ. Методические указания по изучению ноотропной активности фармакологических веществ. Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ. Ред. Хабриев Р.У. М.: Медицина; 2005. с. 308-320. [Voronina TA, Ostrovskaya RU. Guidelines for the study of the nootropic activity of pharmacological substances. Guidelines for the experimental (preclinical) study of new pharmacological substances. Ed. R.U. Khabriev M.: Medicine; 2005. p. 308-320. (in Russian)]

Иноземцев АН, Капица ИГ, Гарибова ТЛ, Бокиева СБ, Воронина ТА. Сопоставление влияния ноотропов и анксиолитиков на функциональные нарушения реакции избегания. Вестник Московского университета. Сер. 16. Биология. 2004;(3):24-30. [Inozemtsev AN, Kapitsa IG, Garibova TL, Bokieva SB, Voronina TA. Comparison of the influence of nootropics and anxiolytics on the functional disorders of the avoidance reaction. Bulletin of the Moscow University. Series 16: Biology. 2004;(3):24-30. (in Russian)]

Карпухина ОВ, Бокиева СБ, Иноземцев АН. Эффект флуоксетина в модели обучения и памяти у крыс, подвергшихся нейротоксическому воздействию свинца. Электронный научно-образовательный вестник Здоровье и образование в XXI веке, 2016;18(12):5-10. [Karpukhina OV, Bokieva SB, Inozemtsev AN. The effect of fluoxetine in a model of learning and memory in rats exposed to neurotoxic exposure to lead. Electronic Scientific and Educational Bulletin Health and Education in the XXI century, 2016;18(12):5-10. (in Russian)]

Литвинова СВ, Иноземцев АН, Аристова ВВ, Калюжный АЛ, Шульговский ВВ, Кузнецов ВВ, Теребилина НН, Панченко ЛФ. Влияние флуоксетина на взаимодействие серотонинергической и эндогенной опиоидной систем при коррекции когнитивных функций и формировании толерантности к действию морфина. Наркология, 2008;(4):15-21. [Litvinova SV, Inozemtsev AN, Aristova VV, Kalyuzhny AL, Shulgovsky VV, Kuznetsov VV, Terebilina NN, Panchenko LF. Fluoxetine effects on serotonin and endogenous opioid systems interaction in cognitive functions correction and tolerance development to morphine action. Narkologia, 2008;(4):15-21. (in Russian)]

Морозова АЮ, Зубков ЕА, Сторожева ЗИ, Кекелидзе ЗИ, Чехонин ВП. Влияние излучения ультразвукового диапазона на формирование симптомов депрессии и тревожности у крыс. Бюллетень экспериментальной биологии и медицины, 2012;154(12):705-708. [Morozova AY, Zubkov EA, Storozheva ZI, Kekelidze ZI, Chekhonin VP. Effect of ultrasonic irradiation on the development of symptoms of depression and anxiety in rats. Bull Exp Biol Med. 2013 Apr;154(6):740-3. (in Russian)] https://doi.org/10.1007/s10517-013-2044-1.

Ушакова ВМ, Горлова АВ, Зубков ЕА, Морозова АЮ, Зоркина ЯА, Павлов ДА, Иноземцев АН, Чехонин ВП. Экспериментальные модели депрессивного состояния. Журнал высшей нервной деятельности им. И.П. Павлова, 2019; 69(2):230-247. [Ushakova VM, Gorlova AV, Zubkov EA, Morozova AYu, Zorkina YaA, Pavlov DA, Inozemtsev AN, Chekhonin VP. Experimental models of depressive disorder. Zhurnal Vysshei Nervnoi Deyatelnosti Imeni I.P. Pavlova, 2019;69(2):230-247. (in Russian)] https://doi.org/10.1134/S0044467719020114.

Фоломкина АА, Орлова НВ, Базян АС. Влияние однократного введения мелипрамина на двигательную активность и оборонительные условные рефлексы пассивного и активного избегания у крыс. Журнал высшей нервной деятельности им. И.П. Павлова, 2004;54(6):829-834. [Folomkina AA, Orlova NV, Bazyan AS. Influence of acute melipramine administration on locomotor activity and defensive conditioned reflexes of passive and active avoidance in rats. Zhurnal Vysshei Nervnoi Deyatelnosti imeni I.P. Pavlova, 2004;54(6):829-834. (in Russian)]

Belzung C, Lemoine M. Criteria of validity for animal models of psychiatric disorders: focus on anxiety disorders and depression. Biol Mood Anxiety Disord. 2011 Nov 7;1(1):9. https://doi.org/10.1186/2045-5380-1-9.

Belzung C. Innovative drugs to treat depression: did animal models fail to be predictive or did clinical trials fail to detect effects? Neuropsychopharmacology. 2014 Apr;39(5):1041-51. https://doi.org/10.1038/npp.2013.342.

de Kloet ER, Molendijk ML. Coping with the Forced Swim Stressor: Towards Understanding an Adaptive Mechanism. Neural Plast. 2016;2016:6503162. https://doi.org/10.1155/2016/6503162.

Everss E, Arenas MC, Vinader-Caerols C, Monleón S, Parra A. Piracetam counteracts the effects of amitriptyline on inhibitory avoidance in CD1 mice. Behav Brain Res. 2005 Apr 30;159(2):235-42. https://doi.org/10.1016/j.bbr.2004.11.004.

Hiemke C. Why do antidepressant therapies have such a poor success rate? Expert Rev Neurother. 2016 Jun;16(6):597-9. https://doi.org/10.1586/14737175.2016.1158647.

Inozemtsev AN. Biological origins of protective mechanisms activated by the disruption of higher nervous activity. University Biological Sciences Bulletin, 2009;64(2):57-62. https://doi.org/10.3103/S0096392509020011.

Inozemtsev AN. Analysis of the memory trace nature in passive avoidance response. Moscow University Biological Sciences Bulletin, 2013;68(2):53-57. https://doi.org/10.3103/S009639251302003X.

Inozemtsev AN, Berezhnoy DS, Novoseletskaya AV. Effects of diazepam, piracetam and mexidol on passive avoidance response. Moscow University Biological Sciences Bulletin, 2019;74(4):215-220. https://doi.org/10.3103/S0096392519040047.

Lucki I, Nobler MS. The acute effects of antidepressant drugs on the performance of conditioned avoidance behavior in rats. Pharmacol Biochem Behav. 1985 Feb;22(2):261-4. https://doi.org/10.1016/0091-3057(85)90388-0.

Markov DD, Novosadova EV. Chronic Unpredictable Mild Stress Model of Depression: Possible Sources of Poor Reproducibility and Latent Variables. Biology (Basel). 2022 Nov 6; 11(11):1621. https://doi.org/10.3390/biology11111621.

Monleón S, Urquiza A, Vinader-Caerols C, Parra A. Effects of oxotremorine and physostigmine on the inhibitory avoidance impairment produced by amitriptyline in male and female mice. Behav Brain Res. 2009 Dec 28; 205(2):367-71. https://doi.org/10.1016/j.bbr.2009.07.006.

Parra A, Vinader-Caerols C, Ferrer-Añó A, Urquiza A, Monleón S. The effect of amitriptyline on inhibitory avoidance in mice is dose-dependent. Psicothema. 2009 Nov; 21(4):528-30.

Parra A, Ferrer-Añó A, Fuentes C, Monleón S, Vinader-Caerols C. Effects of co-administration of amitriptyline and fluoxetine on inhibitory avoidance in mice. Behav Brain Res. 2010 Dec 25; 214(2):343-8. https://doi.org/10.1016/j.bbr.2010.06.002.

Roca M, Vives M, López-Navarro E, García-Campayo J, Gili M. Cognitive impairments and depression: a critical review. Actas Esp Psiquiatr. 2015 Sep;43(5):187-93.

Sansone M, Battaglia M, Vetulani J. Minaprine, but not oxiracetam, prevents desipramine-induced impairment of avoidance learning in mice. Pol J Pharmacol. 1995 Jan-Feb; 47(1):69-73.

Telegdy G, Fekete M, Balázs M, Kádár T. Effects of a new antidepressant drug on active avoidance behavior in rats. Comparative study with tricyclic antidepressants. Arch Int Pharmacodyn Ther. 1983 Nov; 266(1):50-9.

Willner P. The validity of animal models of depression. Psychopharmacology (Berl). 1984; 83(1):1-16.

Willner P, Mitchell PJ. The validity of animal models of predisposition to depression. Behav Pharmacol. 2002 May;13(3):169-88. https://doi.org/10.1097/00008877-200205000-00001.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Azerbaijan Journal of Physiology

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...