The effects of heavy metals on the developing brain
Azerbaijan Journal of Physiology
PDF

Keywords

heavy metals
developing brain
stress
neurotropic agents
learning
memory

How to Cite

1.
Inozemtsev AN, Hashimova UF, Ismayilova KY, Karpukhina OV, Inozemtsev Fermin YA, Rustamov FE, Ibrahimov RI. The effects of heavy metals on the developing brain. Azerbaijan Journal of Physiology. 2022;37(1):7-16. doi:10.59883/ajp.5

Abstract

The present paper reviews the works on the combined effects of heavy metals (HMs) with other HMs, stress, and neurotropic drugs on the developing central nervous systems of humans and animals performed over the past 30 years. The analysis shows that there are disproportionately few works on the mentioned joint effects of HMs in relation to the importance of this issue. It was found that the joint administration of HMs with each other and under stress increases the neurotoxic effect of metals on the brain of animals. A greater vulnerability to the neurotoxic effects of HM mixtures on the developing brain was also noted. Neurotropic drugs in combination with HMs have multidirectional effects. Thus, along with the counteraction of the reference nootropic piracetam to the inhibition of the avoidance response in rats, which is exerted by HMs, there was an increase in the neurotoxic effects of lead and cadmium salts when combined with that nootropic. Combined administration of Semax (a regulatory peptide with nootropic effects) and molybdenum, which separately suppressed the avoidance response in rats, paradoxically improved learning and memory. The revealed unpredictability and enhancement of the neurotoxic effects of HMs when combined with neurotropic agents are fraught with danger to human health in regions with developed industries. This is especially important for the health of children due to the increased vulnerability of their developing brains to neurotoxicants.

https://doi.org/10.59883/ajp.5
PDF

References

Давыдова С.Л., Тагасов В.И. Тяжёлые металлы – супертоксиканты ХХ века. М: изд-во РУДН; 2002. 140 c. [Davydova SL, Tagasov VI. Heavy metals are supertoxicants of the 20th century. M: RUDN University; 2002. 140 p.]

Иноземцев А.Н., Карпухина О.В., Бокиева С.Б., Гумаргалиева К.З. Тяжелые металлы: совместное воздействие с другими химическими агентами на центральную нервную систему. Микроэлементы в медицине. 2015;16(3):20-28. [Inozemtsev AN, Karpukhina OV, Bokieva SB, Gumargalieva K.Z. Heavy metals: combined effects with other chemical agents on the central nervous system. Microelements in medicine. 2015;16(3):20-28.]

Кузнецов М.Н. Проблемы загрязнения биосферы тяжелыми металлами. Орел: Изд-во ГНУ ВНИИСПК; 2011. 383 с. [Kuznetsov MN. Problems of pollution of the biosphere by heavy metals. Orel: Publishing House of the State Scientific Institution All-Russian Research Institute of Fruit Crops Breeding; 2011. 383 p.]

Ревич Б.А., Сидоренко В.Н. Методика оценки экономического ущерба здоровью населения от загрязнения атмосферного воздуха. М.: Акрополь, ЦЭПР; 2006. 96 с. [Revich BA, Sidorenko VN. Methodology for assessing the economic damage to public health from air pollution. Moscow: Acropolis, CEPR; 2006. 96 p.]

Семёнов А.С., Скальный А.В. Иммунопатологические и патобиохимические аспекты патогенеза перинатального поражения мозга. С.-Петербург: Наука; 2009. 367 с. ISBN 978-5-02-026366-6. [Semenov AS, Skalny AV. Immunopathological and pathobiochemical aspects of the pathogenesis of perinatal brain damage. St. Petersburg: Nauka; 2009. 367 p.]

Черных Н.А., Милащенко Н.З., Ладонин В.Ф. Экотоксикологические аспекты загрязнения почв тяжелыми металлами. Пущино: ОНТИ ПНЦ РАН; 2001. 145 с. [Chernykh NA, Milashchenko NZ, Ladonin VF. Ecotoxicological aspects of soil pollution with heavy metals. Pushchino: ONTI PSC RAS; 2001. 145 p.]

Черных Н.А., Сидоренко С.Н. Экологический мониторинг токсикантов в биосфере. М: Изд-во РУДН; 2003. 430 с. [Chernykh NA, Sidorenko SN. Ecological monitoring of toxicants in the biosphere. M: RUDN University; 2003. 430 p.]

Aelion CM, Davis HT, McDermott S, Lawson AB. Soil metal concentrations and toxicity: associations with distances to industrial facilities and implications for human health. Sci Total Environ. 2009 Mar 15;407(7):2216-23. https://doi.org/10.1016/j.scitotenv.2008.11.033

Andrade VM, Aschner M, Marreilha Dos Santos AP. Neurotoxicity of Metal Mixtures. Adv Neurobiol. 2017;18:227-265. https://doi.org/10.1007/978-3-319-60189-2_12.

Antonio MT, Corredor L, Leret ML. Study of the activity of several brain enzymes like markers of the neurotoxicity induced by perinatal exposure to lead and/or cadmium. Toxicol Lett. 2003 Aug 28;143(3):331-40. https://doi.org/10.1016/s0378-4274(03)00194-2.

Antonio MT, López N, Leret ML. Pb and Cd poisoning during development alters cerebellar and striatal function in rats. Toxicology. 2002 Jul 1;176(1-2):59-66. https://doi.org/10.1016/s0300-483x(02)00137-3.

Bassil M, Daou F, Hassan H, Yamani O, Kharma JA, Attieh Z, Elaridi J. Lead, cadmium and arsenic in human milk and their socio-demographic and lifestyle determinants in Lebanon. Chemosphere. 2018 Jan;191:911-21. https://doi.org/10.1016/j.chemosphere.2017.10.111.

Bearer CF. The special and unique vulnerability of children to environmental hazards. Neurotoxicology. 2000 Dec;21(6):925-34.

Bellinger DC. Late neurodevelopmental effects of early exposures to chemical contaminants: reducing uncertainty in epidemiological studies. Basic Clin Pharmacol Toxicol. 2008 Feb;102(2):237-44. https://doi.org/10.1111/j.1742-7843.2007.00164.x.

Betharia S, Maher TJ. Neurobehavioral effects of lead and manganese individually and in combination in developmentally exposed rats. Neurotoxicology. 2012 Oct;33(5):1117-27. https://doi.org/10.1016/j.neuro.2012.06.002.

Block ML, Calderón-Garcidueñas L. Air pollution: mechanisms of neuroinflammation and CNS disease. Trends Neurosci. 2009 Sep;32(9):506-16. https://doi.org/10.1016/j.tins.2009.05.009.

Calderón-Garcidueñas L, Franco-Lira M, Mora-Tiscareño A, Medina-Cortina H, Torres-Jardón R, Kavanaugh M. Early Alzheimer's and Parkinson's disease pathology in urban children: Friend versus Foe responses--it is time to face the evidence. Biomed Res Int. 2013;2013:161687. https://doi.org/10.1155/2013/161687.

Carpenter DO, Arcaro K, Spink DC. Understanding the human health effects of chemical mixtures. Environ Health Perspect. 2002 Feb;110 Suppl 1(Suppl 1):25-42. https://doi.org/10.1289/ehp.02110s125.

Claus Henn B, Austin C, Coull BA, Schnaas L, Gennings C, Horton MK, Hernández-Ávila M, Hu H, Téllez-Rojo MM, Wright RO, Arora M. Uncovering neurodevelopmental windows of susceptibility to manganese exposure using dentine microspatial analyses. Environ Res. 2018 Feb;161:588-598. https://doi.org/10.1016/j.envres.2017.12.003.

Claus Henn B, Coull BA, Wright RO. Chemical mixtures and children's health. Curr Opin Pediatr. 2014 Apr;26(2):223-9. https://doi.org/10.1097/MOP.0000000000000067.

Claus Henn B, Schnaas L, Ettinger AS, Schwartz J, Lamadrid-Figueroa H, Hernández-Avila M, Amarasiriwardena C, Hu H, Bellinger DC, Wright RO, Téllez-Rojo MM. Associations of early childhood manganese and lead coexposure with neurodevelopment. Environ Health Perspect. 2012 Jan;120(1):126-31. https://doi.org/10.1289/ehp.1003300.

Cobbina SJ, Chen Y, Zhou Z, Wu X, Zhao T, Zhang Z, Feng W, Wang W, Li Q, Wu X, Yang L. Toxicity assessment due to sub-chronic exposure to individual and mixtures of four toxic heavy metals. J Hazard Mater. 2015 Aug 30;294:109-20. https://doi.org/10.1016/j.jhazmat.2015.03.057.

Cory-Slechta DA. Studying toxicants as single chemicals: does this strategy adequately identify neurotoxic risk? Neurotoxicology. 2005 Aug;26(4):491-510. https://doi.org/10.1016/j.neuro.2004.12.007.

Crouch PJ, Barnham KJ, Bush AI, White AR. Therapeutic treatments for Alzheimer's disease based on metal bioavailability. Drug News Perspect. 2006 Oct;19(8):469-74. https://doi.org/10.1358/dnp.2006.19.8.1021492.

Daston G, Faustman E, Ginsberg G, Fenner-Crisp P, Olin S, Sonawane B, Bruckner J, Breslin W, McLaughlin TJ. A framework for assessing risks to children from exposure to environmental agents. Environ Health Perspect. 2004 Feb;112(2):238-56. https://doi.org/10.1289/ehp.6182.

de Rosa CT, El-Masri HA, Pohl H, Cibulas W, Mumtaz MM. Implications of chemical mixtures in public health practice. J Toxicol Environ Health B Crit Rev. 2004 Sep-Oct;7(5):339-50. https://doi.org/10.1080/10937400490498075.

Feron VJ, Groten JP, Jonker D, Cassee FR, van Bladeren PJ. Toxicology of chemical mixtures: challenges for today and the future. Toxicology. 1995 Dec 28;105(2-3):415-27. https://doi.org/10.1016/0300-483x(95)03239-c.

Gardella C. Lead exposure in pregnancy: a review of the literature and argument for routine prenatal screening. Obstet Gynecol Surv. 2001 Apr;56(4):231-8. https://doi.org/10.1097/00006254-200104000-00024.

Genc S, Zadeoglulari Z, Fuss SH, Genc K. The adverse effects of air pollution on the nervous system. J Toxicol. 2012;2012:782462. https://doi.org/10.1155/2012/782462.

Grandjean P, Landrigan PJ. Developmental neurotoxicity of industrial chemicals. Lancet. 2006 Dec 16;368(9553):2167-78. https://doi.org/10.1016/S0140-6736(06)69665-7.

Grandjean P, Landrigan PJ. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 2014 Mar;13(3):330-8. https://doi.org/10.1016/S1474-4422(13)70278-3.

Gu C, Chen S, Xu X, Zheng L, Li Y, Wu K, Liu J, Qi Z, Han D, Chen G, Huo X. Lead and cadmium synergistically enhance the expression of divalent metal transporter 1 protein in central nervous system of developing rats. Neurochem Res. 2009 Jun;34(6):1150-6. https://doi.org/10.1007/s11064-008-9891-6.

Heyer DB, Meredith RM. Environmental toxicology: Sensitive periods of development and neurodevelopmental disorders. Neurotoxicology. 2017 Jan;58:23-41. https://doi.org/10.1016/j.neuro.2016.10.017.

Inhorn MC, King L, Nriagu JO, Kobeissi L, Hammoud N, Awwad J, Abu-Musa AA, Hannoun AB. Occupational and environmental exposures to heavy metals: risk factors for male infertility in Lebanon? Reprod Toxicol. 2008 Feb;25(2):203-12. https://doi.org/10.1016/j.reprotox.2007.10.011.

Inozemtsev AN, Bokieva SB, Karpukhina OV, Gumargalieva KZ, Kamenskii AA, Myasoedov NF. Paradoxical Influence of Combined Effect of Semax and Ammonium Molybdate on Learning and Memory in Rats. Moscow University Biological Sciences Bulletin 2017;72(3):151-154 https://doi.org/10.3103/S0096392517030051.

Inozemtsev AN, Bokieva SB, Karpukhina OV, Gumargalieva KZ. Effects of combined treatment with heavy metals and piracetam on learning and memory in rats. Dokl Biol Sci. 2008 Sep-Oct;422:301-4. https://doi.org/10.1134/s0012496608050062.

Karakis I, Landau D, Gat R, Shemesh N, Tirosh O, Yitshak-Sade M, Sarov B, Novack L. Maternal metal concentration during gestation and pediatric morbidity in children: an exploratory analysis. Environ Health Prev Med. 2021 Mar 25;26(1):40. https://doi.org/10.1186/s12199-021-00963-z.

Kim Y, Kim BN, Hong YC, Shin MS, Yoo HJ, Kim JW, Bhang SY, Cho SC. Co-exposure to environmental lead and manganese affects the intelligence of school-aged children. Neurotoxicology. 2009 Jul;30(4):564-71. https://doi.org/10.1016/j.neuro.2009.03.012.

Korfali SI, Hawi T, Mroueh M. Evaluation of heavy metals content in dietary supplements in Lebanon. Chem Cent J. 2013 Jan 18;7(1):10. https://doi.org/10.1186/1752-153X-7-10.

Landrigan PJ, Kimmel CA, Correa A, Eskenazi B. Children's health and the environment: public health issues and challenges for risk assessment. Environ Health Perspect. 2004 Feb;112(2):257-65. https://doi.org/10.1289/ehp.6115.

Landrigan PJ. Risk assessment for children and other sensitive populations. Ann N Y Acad Sci. 1999;895:1-9. https://doi.org/10.1111/j.1749-6632.1999.tb08073.x.

Leret ML, Millán JA, Antonio MT. Perinatal exposure to lead and cadmium affects anxiety-like behaviour. Toxicology. 2003 Apr 15;186(1-2):125-30. https://doi.org/10.1016/s0300-483x(02)00728-x.

Levesque S, Surace MJ, McDonald J, Block ML. Air pollution & the brain: Subchronic diesel exhaust exposure causes neuroinflammation and elevates early markers of neurodegenerative disease. J Neuroinflammation. 2011 Aug 24;8:105. https://doi.org/10.1186/1742-2094-8-105.

Lidsky TI, Schneider JS. Lead neurotoxicity in children: basic mechanisms and clinical correlates. Brain. 2003 Jan;126(Pt 1):5-19. https://doi.org/10.1093/brain/awg014.

Mauderly JL, Samet JM. Is there evidence for synergy among air pollutants in causing health effects? Environ Health Perspect. 2009 Jan;117(1):1-6. https://doi.org/10.1289/ehp.11654.

Mehra R, Sodhi RK, Aggarwal N. Memory restorative ability of clioquinol in copper-cholesterol-induced experimental dementia in mice. Pharm Biol. 2015;53(9):1250-9. https://doi.org/10.3109/13880209.2014.974061.

Mills NL, Donaldson K, Hadoke PW, Boon NA, MacNee W, Cassee FR, Sandström T, Blomberg A, Newby DE. Adverse cardiovascular effects of air pollution. Nat Clin Pract Cardiovasc Med. 2009 Jan;6(1):36-44. https://doi.org/10.1038/ncpcardio1399.

Misra BB. The Chemical Exposome of Human Aging. Front Genet. 2020 Nov 23;11:574936. https://doi.org/10.3389/fgene.2020.574936.

Monosson E. Chemical mixtures: considering the evolution of toxicology and chemical assessment. Environ Health Perspect. 2005 Apr;113(4):383-90. https://doi.org/10.1289/ehp.6987.

Moulton PV, Yang W. Air pollution, oxidative stress, and Alzheimer's disease. J Environ Public Health. 2012;2012:472751. https://doi.org/10.1155/2012/472751.

Numan MS, Brown JP, Michou L. Impact of air pollutants on oxidative stress in common autophagy-mediated aging diseases. Int J Environ Res Public Health. 2015 Feb 17;12(2):2289-305. https://doi.org/10.3390/ijerph120202289.

Rai A, Maurya SK, Khare P, Srivastava A, Bandyopadhyay S. Characterization of developmental neurotoxicity of As, Cd, and Pb mixture: synergistic action of metal mixture in glial and neuronal functions. Toxicol Sci. 2010 Dec;118(2):586-601. https://doi.org/10.1093/toxsci/kfq266.

Reuben A. Childhood Lead Exposure and Adult Neurodegenerative Disease. J Alzheimers Dis. 2018;64(1):17-42. https://doi.org/10.3233/JAD-180267.

Payne-Sturges DC, Cory-Slechta DA, Puett RC, Thomas SB, Hammond R, Hovmand PS. Defining and Intervening on Cumulative Environmental Neurodevelopmental Risks: Introducing a Complex Systems Approach. Environ Health Perspect. 2021 Mar;129(3):35001. https://doi.org/10.1289/EHP7333.

Rice D, Barone S Jr. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect. 2000 Jun;108 Suppl 3(Suppl 3):511-33. https://doi.org/10.1289/ehp.00108s3511.

Sanders AP, Claus Henn B, Wright RO. Perinatal and Childhood Exposure to Cadmium, Manganese, and Metal Mixtures and Effects on Cognition and Behavior: A Review of Recent Literature. Curr Environ Health Rep. 2015 Sep;2(3):284-94. https://doi.org/10.1007/s40572-015-0058-8.

Seed J, Brown RP, Olin SS, Foran JA. Chemical mixtures: current risk assessment methodologies and future directions. Regul Toxicol Pharmacol. 1995 Aug;22(1):76-94. https://doi.org/10.1006/rtph.1995.1071.

Sheffield PE, Landrigan PJ. Global climate change and children's health: threats and strategies for prevention. Environ Health Perspect. 2011 Mar;119(3):291-8. https://doi.org/10.1289/ehp.1002233.

Sobolewski M, Abston K, Conrad K, Marvin E, Harvey K, Susiarjo M, Cory-Slechta DA. Lineage- and Sex-Dependent Behavioral and Biochemical Transgenerational Consequences of Developmental Exposure to Lead, Prenatal Stress, and Combined Lead and Prenatal Stress in Mice. Environ Health Perspect. 2020 Feb;128(2):27001. https://doi.org/10.1289/EHP4977.

Spyker JM. Assessing the impact of low level chemicals on development: behavioral and latent effects. Fed Proc. 1975 Aug;34(9):1835-44.

Sukhn C, Awwad J, Ghantous A, Zaatari G. Associations of semen quality with non-essential heavy metals in blood and seminal fluid: data from the Environment and Male Infertility (EMI) study in Lebanon. J Assist Reprod Genet. 2018 Sep;35(9):1691-1701. https://doi.org/10.1007/s10815-018-1236-z.

Virgolini MB, Rossi-George A, Lisek R, Weston DD, Thiruchelvam M, Cory-Slechta DA. CNS effects of developmental Pb exposure are enhanced by combined maternal and offspring stress. Neurotoxicology. 2008 Sep;29(5):812-27. https://doi.org/10.1016/j.neuro.2008.03.003.

Wazne M, Korfali S. Spatial and temporal assessment of metal pollution in the sediments of the Qaraoun reservoir, Lebanon. Environ Sci Pollut Res Int. 2016 Apr;23(8):7603-14. https://doi.org/10.1007/s11356-015-6022-1.

Winiarska-Mieczan A. Protective effect of tea against lead and cadmium-induced oxidative stress-a review. Biometals. 2018 Dec;31(6):909-926. https://doi.org/10.1007/s10534-018-0153-z.

Winneke G. Developmental aspects of environmental neurotoxicology: lessons from lead and polychlorinated biphenyls. J Neurol Sci. 2011 Sep 15;308(1-2):9-15. https://doi.org/10.1016/j.jns.2011.05.020.

Wu J, Basha MR, Brock B, Cox DP, Cardozo-Pelaez F, McPherson CA, Harry J, Rice DC, Maloney B, Chen D, Lahiri DK, Zawia NH. Alzheimer's disease (AD)-like pathology in aged monkeys after infantile exposure to environmental metal lead (Pb): evidence for a developmental origin and environmental link for AD. J Neurosci. 2008 Jan 2;28(1):3-9. https://doi.org/10.1523/JNEUROSCI.4405-07.2008.

Xi S, Jin Y, Lv X, Sun G. Distribution and speciation of arsenic by transplacental and early life exposure to inorganic arsenic in offspring rats. Biol Trace Elem Res. 2010 Apr;134(1):84-97. https://doi.org/10.1007/s12011-009-8455-1.

Zhang YM, Liu XZ, Lu H, Mei L, Liu ZP. Lipid peroxidation and ultrastructural modifications in brain after perinatal exposure to lead and/or cadmium in rat pups. Biomed Environ Sci. 2009 Oct;22(5):423-9. https://doi.org/10.1016/S0895-3988(10)60021-9.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 Azerbaijan Journal of Physiology

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...