A study of lipid metabolism and oxidative stress in rats with chronic nickel nitrate poisoning in the background of experimental atherosclerosis under the influence of a complex antitoxicant
PDF

Keywords

plant antitoxicant
lipid metabolism
oxidative stress
nickel nitrate
experimental atherosclerosis

How to Cite

1.
Ibrahimov RI, Hashimova UF, Ismayilova KY. A study of lipid metabolism and oxidative stress in rats with chronic nickel nitrate poisoning in the background of experimental atherosclerosis under the influence of a complex antitoxicant. Azerb. J. Physiol. 2022;37(2):13-19. doi:10.59883/ajp.27

Abstract

The purpose of the research was to study the effect of a complex plant antitoxicant from the flora of Azerbaijan consisting of a mixture of licorice, wild rose, grape seeds, oat bran, and burdock in a ratio of 3:2:1:1:2 (Eurasian patent 201600043 dated 06/25/2018) on lipid metabolism and oxidative stress in rats chronically poisoned with nickel nitrate against the background of experimental atherosclerosis. It was shown that in experimental atherosclerosis, after exposure to nickel nitrate, lipid metabolism and oxidative stress disorders were aggravated. A proportional relationship was found between the severity of disorders and the duration of intoxication with nickel nitrate, with a maximum of disorders on the 60th day after exposure. In the experimental group, after chronic intoxication with nickel nitrate, a complex plant antioxidant implementation led to a significant improvement in lipid metabolism and oxidative stress. The revealed corrective effect of the plant antitoxicant indicates its detoxifying effect and the possibility of its clinical approbation both for the prevention and treatment of chronic nickel nitrate poisoning in patients with existing atherosclerotic vascular lesions.

https://doi.org/10.59883/ajp.27
PDF

References

Andrade VM, Aschner M, Marreilha Dos Santos AP. Neurotoxicity of Metal Mixtures. Adv Neurobiol. 2017;18:227-265. https://doi.org/10.1007/978-3-319-60189-2_12.

Asgary S, Movahedian A, Keshvari M, Taleghani M, Sahebkar A, Sarrafzadegan N. Serum levels of lead, mercury and cadmium in relation to coronary artery disease in the elderly: A cross-sectional study. Chemosphere. 2017 Aug;180:540-544. https://doi.org/10.1016/j.chemosphere.2017.03.069.

Caudle WM. Occupational Metal Exposure and Parkinsonism. Adv Neurobiol. 2017;18:143-158. https://doi.org/10.1007/978-3-319-60189-2_7.

Fagerberg B, Barregard L, Sallsten G, Forsgard N, Ostling G, Persson M, Borné Y, Engström G, Hedblad B. Cadmium exposure and atherosclerotic carotid plaques--results from the Malmö diet and Cancer study. Environ Res. 2015 Jan;136:67-74. https://doi.org/10.1016/j.envres.2014.11.004.

Fatenkov OV, Simerzin VV, Panisheva YA, et al. Innovative treatments for patients with subclinical carotid atherosclerosis. Bulletin of Medical Institute “REAVIZ.” Rehabilitation, Physician and Health. 2019;2(38):129-137.

Patwa J, Flora SJS. Heavy Metal-Induced Cerebral Small Vessel Disease: Insights into Molecular Mechanisms and Possible Reversal Strategies. Int J Mol Sci. 2020 May 29;21(11):3862. https://doi.org/10.3390/ijms21113862.

Karri V, Kumar V, Ramos D, Oliveira E, Schuhmacher M. Comparative In Vitro Toxicity Evaluation of Heavy Metals (Lead, Cadmium, Arsenic, and Methylmercury) on HT-22 Hippocampal Cell Line. Biol Trace Elem Res. 2018 Jul;184(1):226-239. https://doi.org/10.1007/s12011-017-1177-x.

Karri V, Schuhmacher M, Kumar V. Heavy metals (Pb, Cd, As and MeHg) as risk factors for cognitive dysfunction: A general review of metal mixture mechanism in brain. Environ Toxicol Pharmacol. 2016 Dec;48:203-213. https://doi.org/10.1016/j.etap.2016.09.016.

Schofield K. The Metal Neurotoxins: An Important Role in Current Human Neural Epidemics? Int J Environ Res Public Health. 2017 Dec 5;14(12):1511. https://doi.org/10.3390/ijerph14121511.

Sumin AN, YuD M, Shcheglova AV, Barbarash LS. Predictors of unfavorable outcomes in patients with peripheral atherosclerosis. Russian Journal of Cardiology and Cardiovascular Surgery= Kardiologiya i serdechno-sosudistaya khirurgiya. 2020;13(1):41-7.

Гаврилов ВБ, Гаврилова АР, Магуль ЛМ. Анализ методов определения продуктов перекисного определения липидов в сыворотке крови по тесту с тиобарбитуровой кислотой. Вопросы медицинской химии. 1987;33(1):118-22. [Gavrilov VB, Gavrilova AR, Magul LM. Analysis of methods for determining products of lipid peroxidation in blood serum according to the test with thiobarbituric acid. Vopr Med Khim. 1987;33(1):118-22.]

Королюк МА, Иванова ЛК, Майорова ИГ, Токарева ВА. Метод определения активности каталазы. Лабораторное дело. 1988(4):44-7. [Korolyuk M.A. Method for determining catalase activity. Lab Delo. 1988(4):44-7.]

Лысенко НН, Догадина МА. Основы экотоксикологии. Учеб. пособие. Орел: Изд-во Орел ГАУ; 2015. 460 с.[Lysenko NN, Dogadina MA. Fundamentals of Ecotoxicology. Tutorial. Orel: Orel GAU publishing house; 2015. 460 p.]

Савицкий ИВ, Слюсарь АА, Мястковская ИВ. Мультифакторное моделирование атеросклероза на крысах. Журнал образования, здоровья и спорта. 2016;6(3):233-240. [Savitskiy IV, Sliusar AA, Miastkovskaja IV. Multifactorial modeling of atherosclerosis in rats. Journal of Education, Health and Sport. 2016;6(3):233-240. http://dx.doi.org/10.5281/zenodo.55402.]

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 Azerbaijan Journal of Physiology

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...