The effect of hypoxia on the total electrical activity of the developing cerebral cortex
PDF

Keywords

hypoxia
cerebral cortex
ontogenesis
electrocorticogram

How to Cite

1.
Guseinov AG, Mammadov KB. The effect of hypoxia on the total electrical activity of the developing cerebral cortex. Azerb. J. Physiol. 2023;38(1):57-64. doi:10.59883/ajp.16

Abstract

Hypoxia in the nervous system causes morphofunctional changes, which are reflected in the total activity of the cerebral cortex. Lack of oxygen leads to a change in all EEG indicators of the developing cerebral cortex, as well as the appearance of pathological activity in it. This review article summarizes and analyzes data on the effect of hypoxia in early ontogenesis on the total activity of the cerebral cortex.

https://doi.org/10.59883/ajp.16
PDF

References

Борукаева ИХ, Абазова ЗХ, Кумыков ВК. Влияние кратковременной гипоксии на биоэлектрическую активность головного мозга детей, подростков и юношей. Фундаментальные исследования, Пенза. Издательский Дом "Академия Естествознания". 2014:4(3):466–471. [Borukaeva IKh, Abazova ZX, Kumykov VK. The effect of short–term hypoxia on the bioelectric activity of the brain of children, adolescents and young men. Fundamental research, Penza. Publishing House "Academy of Natural Sciences". 2014:4(3):466–471.]

Гусейнов АГ. Механизмы влияния гипоксии на суммарную активность коры головного мозга. Российский физиологический журнал. 2017:103(11): 1209–1224. [Huseynov A.H. Mechanism of impact of hypoxia on general activity of brain cortex. Russian Physiological Journal. 2017:103(11): 1209–1224.]

Гусейнов АГ. Влияние гипоксии на электрическую активность мозга крольчат. Труды общества зоологов Азербайджана. 2018:7:96–102. [Guseinov AG. The effect of hypoxia on the electrical activity of the brain of baby rabbits. Proceedings of the Azerbaijan Society of Zoologists. 2018:7: 96–102.]

Гусейнов АГ. Влияние последствий гипоксических воздействий в разные периоды эмбриогенеза, на электрическую активность слуховой коры в первый месяц постнатального развития кроликов. Журнал эволюционной биохимии и физиологии. 2021:57(6):63–75. https://doi.org/10.31857/S0044452921060048 [Guseynov AG. The impact of hypoxic exposures in different periods of prenatal development on electrical activity of the rabbit auditory cortex in the first month of postnatal life. J Evol Biochem Phys. 2021 Nov;57:1277-89.] https://doi.org/10.1134/S0022093021060089

Гусейнов АГ, Мамедов ХБ. Влияние гипоксии в разные периоды пренатального онтогенеза на электрокортикограмму плодов кролика. Российский физиологический журнал. 2012:98:1250–1257. [Guseĭnov AG, KhB M. Impact of hypoxia in different periods of prenatal ontogenesis on ECoG of rabbit fetus. Rossiiskii Fiziologicheskii Zhurnal Imeni IM Sechenova. 2012 Oct 1;98(10):1250-7.]

Мехтиев АА, Ибрагимли ИГ, Гусейнов АГ. Влияние гипоксии, проведенное в разные периоды онтогенеза на биоэлектрическую активность мозга крольчат. Известия Национальной Академии Наук Азербайджана. 2015:70:98–103. [Mehdiyev A, Ibrahimli IG, Guseynov AG. The effect of hypoxia carried out in different periods of ontogenesis on the bioelectric activity of the brain of baby rabbits. Proceedings of the National Academy of Sciences of Azerbaijan. 2015:70:98–103.]

Тагиев ШК, Джангиров ПЛ, Мамедов ХБ. Фоновая биоэлектрическая активность мозга кроликов разных возрастных сроков. Журнал высшей нервной деятельности. 1982:32(3):560-562. [Tagiev ShK, Dzhangirov PL, Mamedov KhB. Background electrical activity of the brains of rabbit’s fetuses of different age groups. Zh Vyssh Nerv Deiat Im I P Pavlova. 1982 May-Jun;32(3):560-2. Russian]

Халецкая ОВ, Карпович ЕИ. Возможности нейрокартирования в диагностике гипоксического поражения головного мозга у новорожденных. Вестник Ивановской медицинской академии. 1998:3(4):49–52. [Khaletskaya OV, Karpovich EI. Possibilities of neuromapping in the diagnosis of hypoxic brain damage in newborns. Bulletin of the Ivanovo Medical Academy. 1998:3(4):49–52.]

Abend N, Wusthoff С. Neonatal Seizures and Status Epilepticus. Clin. Neurophysiol. 2012:29:441–448. https://doi.org/10.1097/WNP.0b013e31826bd90d

Amzica F. Basic physiology of burst–suppression. Epilepsia. 2009:50:38–49. https://doi.org/10.1111/j.1528-1167.2009.02345.x

Araque A, Parpura V, Sanzgiri RP, Haydon PG. Tripatite synapses: glia, Ihe unacknowledged partner. Trends Neurosci.1999:22(5)208–15.

Auer R, Olsson Y, Siesjö C. Hypoglycemic brain injury in the rat. Correlation of density of brain damage with the EEG isoelectric time: a quantitative study. Diabetes. 1984: 33:1090–8.

Beydoun A, Yen CE, Drury I. Variance of interburst intervals in burst suppression. EEG Clin. Neurophysiol. 1991:79(6):435–9.

Billiards SS, Pierson CR, Haynes RL, Folkerth RD, Kinney HC. Is the late preterm infant more vulnerable to gray matter injury than the term infant? Clin Perinatol. 2006:33:915–33.

Bourel–Ponchel E, Querne L, Flamein F, Ghostine–Ramadan G, Wallois F, Marie Lamblin D. The prognostic value of neonatal conventional–EEG monitoring in hypoxic–ischemic encephalopathy during therapeutic hypothermia. Dev Med Child Neurol. 2023;65:58–66. https://doi.org/10.1111/dmcn.15302

Bragin A, Claeys P, Vonck K, Van Roost D, Wilson C, Boon P, Engel JJr. Analysis of initial slow waves (ISWs) at the seizure onset in patients with drug resistant temporal lobe epilepsy. Epilepsia. 2007:10:1883–94.

Briatore E, Ferrari F, Pomero G, Boghi A, Gozzoli L, Micciolo R, Espa G, Gancia P, Calzolari S. EEG findings in cooled asphyxiated newborns and correlation with site and severity of brain damage. Brain Dev. 2013:35:420–6. https://doi.org/10.1016/j.braindev.2012.07.002

Çavdar S, Hacıoğlu Bay H, Kirazlı Ö, Özgür Çakmak Y, Onat F. Comparing GABA–ergic cell populations in the thalamic reticular nucleus of normal and genetic absence epilepsy rats from Strasbourg (GAERS). Neurological Sciences. 2013:34:1991–2000. https://doi.org/10.1007/s10072-013-1435-4

Dereymaeker A, Matic V, Vervisch J, Perumpillichira, Cherian PJ. Automated EEG background analysis to identify neonates with hypoxic-ischemic encephalopathy treated with hypothermia at risk for adverse outcome: A pilot study. Pediatrics & Neonatology. 2019: 60(1):50–8. https://doi.org/10.1016/j.pedneo.2018.03.010

El-Ayouty M, Abdel-Hady H, El-Mogy S, Zaghlol H, El-Beltagy M, Aly H. Relationship between electroencephalography and magnetic resonance imaging findings after hypoxic–ischemic encephalopathy at term. Am. J. Perinatol. 2007:24:467–73.

El-Hayek Y, Chiping, Wu, Liang Zhang. Early suppression of intracranial EEG signals predicts ischemic outcome in adult mice following hypoxia–ischemia. Exp. Neurol. 2011:231: 295–303. https://doi.org/10.1016/j.expneurol.2011.07.003

Eung-Kwon Pae, Yoon AJ,, Ahuja B., Lau GW, Nguyen DD, Yong Kim, Harper RM. Perinatal intermittent hypoxia alters γ–aminobutyric acid: a receptor levels in rat cerebellum. Inter. J. Dev. Neurosci. 2011:29:819–26. https://doi.org/10.1016/j.ijdevneu.2011.09.003

Ferron J–F, Kroeger D, Chever O, Amzica F. Cortical inhibition during burst suppression induced with isoflurane anesthesia. J. Neurosci. 2009:29: 9850–60.

Foran A, Cinnante C, Groves A, Azzopardi DV, Rutherford MA, Cowan FM. Patterns of brain injury and outcome in term neonates presenting with postnatal collapse. Arch. Dis. Child Fetal Neonatal Ed. 2009: 94:168–77.

Gao L, Lyons A, Greenfield L. Hypoxia alters GABAA receptor function and subunit expression in NT2–N neurons. Neuropharmacology. 2004:46:318–30.

Gao L–L, Yuan–Long Song, Ming Tang, Chang–Jin Liu, Xin–Wu Hu, Hong–Yan Luo, Hescheler J. Effect of hypoxia on hyperpolarization–activated current in mouse dorsal root ganglion neurons. Brain Res.2006:1078:49–59.

Gavilanes A, Gantert M, Strackx E, Zimmermann L, Seeldrayers S, Vles J, Kramer B. Increased EEG delta frequency corresponds to chorioamnionitis–related brain injury. Front Biosci (Schol Ed.). 2010: 2:432–8. https://doi.org/10.2741/S76

Geocadin R. Muthuswamy J, Sherman D, Thakor NV, Hanley DF. Early electrophysiological and histologic changes after global cerebral ischemia in rats. Mov. Disord. 2000:15:14–21.

George S, Gunn AJ, Westgate JA, Brabyn C, Jian Guan, Bennet L. Fetal heart rate variability and brain stem injury after asphyxia in preterm fetal sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004:287:925–33.

Hayakawa F. Okumura A, Kato T, Kuno K, Watanabe K. Disorganized patterns: chronic–stage EEG abnormality of the late neonatal period following severely depressed EEG activities in early preterm infants. Neuropediatrics. 1997:28:272–5.

Hellstrom–Westas L, Rosen L. Electroencephalography and brain damage in preterm infants. Early Human Dev. 2005:81:255–61.

Hrachovy R, O'Donnell D. The significance of excessive rhythmic alpha and/or theta frequency activity in the EEG of the neonate. Clin. Neurophysiol., 1999:110:438–44.

Huiying Wu, Robinson P. Modeling and investigation of neural activity in the thalamus. Journal of Theoretical Biology, 2007:244:1–14.

Inder TE,, Buckland L, Williams CE, Spencer C, Gunning MI, Darlow BA, Volpe JJ, Gluckman PD. Lowered electroencephalographic spectral edge frequency predicts the presence of cerebral white matter injury in premature infants. Pediatrics. 2003:111:27–33.

Jensen O, Hari R, Kaila K. Visually evoked gamma responses in the human brain are enhanced during voluntary hyperventilation. Neuroimage. 2002;15:575–86.

Keogh MJ, Drury PP, Bennet L, Davidson JO, Mathai S, Gunn ER, Booth LC, Gunn AJ. Limited predictive value of early changes in EEG spectral power for neural injury after asphyxia in preterm fetal sheep. Pediatric Res. 2012:71:345–53. https://doi.org/10.1038/pr.2011.80

Khan RL, Nunes ML, Garcias da Silva LF, da Costa JC. Predictive value of sequential electroencephalogram (EEG) in neonates with seizures and its relation to neurological outcome. J Child Neurol. 2008:23:144–50.

Kroeger D, Amzica F. Hypersensitivity of the anesthesia–induced comatose brain. J. Neurosci. 2007:27:10597–607. https://doi.org/10.1523/jneurosci.3440-07.2007

Lamblin M–D, André M. Electroencephalogram of the full–term newborn. Normal features and hypoxic–ischemic encephalopathy. J. Neurophysiol. 2011:41:1–18. https://doi.org/10.1016/j.neucli.2010.12.001.

Lewis LD, Shinung Ching, Weiner VS, Peterfreund RA, Eskandar EN, Cash SS, Brown EN, Purdon PL. Local cortical dynamics of burst suppression in the anaesthetized brain. Brain. 2013:136:2727–37. https://doi.org/10.1093/brain/awt174

Liu Y–F, Xiao–Mei Tong, Cong–Le Zhou, Dan–Dan Zhang, Mei–Hua Piao, Zai–Ling Li. Relationship between degree of white matter damage and EEG changes in premature infants early after birth. Zhongguo Dang Dai Er Ke Za Zhi. 2013:15:321–6.

Löfgren N, Lindecrantz K, Flisberg A, Bågenholm R, Kjellmer I, Thordstein M. Spectral distance for ARMA models applied to electroencephalogram for early detection of hypoxia. J. Neural. Eng. 2006:3:227-34. https://doi.org/10.1088/1741-2560/3/3/005.

Low E, Stevenson N. Short–Term Effects of Phenobarbitone on Electrographic Seizures in Neonates. Neonatology. 2016:110:40–6. https://doi.org/10.1159/000443782.

Murray DM, Boylan GB, Ryan CA, Connolly S. Early EEG findings in hypoxic–ischemic encephalopathy predict outcomes at 2 years. Pediatrics: 2009:124:459–567. https://doi.org/10.1542/peds.2008-2190.

Murray DM, O'Connor CM, Ryan CA, Korotchikova I, Boylan GB. Early EEG grade and outcome at 5 years after mild neonatal hypoxic ischemic encephalopathy pediatrics. 2016. 138. (4): e20160659. https://doi.org/10.1542/peds.2016-0659.

J, Kimura T, Ding MC, Geocadin R, Hanley DF, Thakor NV. Vulnerability of the thalamic somatosensory pathway after prolonged global hypoxic–ischemic injury. J. Neurosci. 2002:115:917–29.

Nakamura S, Kusaka T, Koyano K, Miki T, Ueno M, Jinnai W, Yasuda S, Nakamura M, Okada H, Isobe K, Itoh S. Relationship between early changes in cerebral blood volume and electrocortical activity after hypoxic–ischemic insult in newborn piglets. Brain Dev. 2014:36:563–71. https://doi.org/10.1016/j.braindev.2013.08.005

Nash KB, Bonifacio SL, Glass HC, Sullivan JE, Barkovich AJ, Ferriero DM, Cilio MR. Video–EEG monitoring in newborns with hypoxic–ischemic encephalopathy treated with hypothermia. Neurology. 2011:76:556–62. https://doi.org/10.1212/wnl.0b013e31820af91a

Neubauer D, Osredkar D, Paro–Panjan D, Skofljanec A, Derganc M. Recording conventional and amplitudeintegrated EEG in neonatal intensive care unit. Eur. J. Paediatr. Neurol. 2011:15:405–16. https://doi.org/10.1016/j.ejpn.2011.03.001

Nguyen S, d'Allest AM, de Villepin AT, de Belliscize Walls–Esquivel JE, Salefranque F, Lamblin MD. Pathological features of neonatal EEG in preterm babies born before 30 weeks of gestational age. Clin. Neurophysiol. 2007:37:325–70. https://doi.org/10.1016/j.neucli.2007.10.001.

Niedermeyer E. Alpha rhythms as physiological and abnormal phenomena. Inter. J. Psychophysiol. 1997:26:31–49.

O’Toole J.M., Mathieson SR, Raurale SA, Magarelli F, Marnane WP, Lightbody G, Boylan CB. Neonatal EEG graded for severity of background abnormalities in hypoxic–ischaemic encephalopathy / Sci Data 10, 129 2023. https://doi.org/10.1038/s41597–023–02002–8

San–Juan OD, Chiappa KH, Costello DJ, Cole AJ. Periodic epileptiform discharges in hypoxic encephalopathy: BiPLEDs and GPEDs as a poor prognosis for survival. Seizure: 2009: 18: 365-68. https://doi.org/10.1016/j.seizure.2009.01.003.

Shah DK, Lavery S, Doyle LW, Wong C, McDougall P, Inder TE. Use of 2-channel bedside electroencephalogram monitoring in term-born encephalopathic infants related to cerebral injury defined by magnetic resonance imaging. Pediatrics. 2006:118:47–55. https://doi.org/10.1542/peds.2005-1294.

Sinclair DB, Campbell M, Byrne P, Prasertsom W, Robertson CM. EEG and long–term outcome of term infants with neonatal hypoxic–ischemic encephalopathy. Clin. Neurophysiol. 1999:110:655–9.

Sookyong Koh, Tibayan FD, Simpson JN, Jensen FE. NBQX or Topiramate Treatment after Perinatal Hypoxia–induced Seizures Prevents Later Increases in Seizure–induced Neuronal Injury. Epilepsia, 2004:45:569–75. https://doi.org/10.1111/j.0013-9580.2004.69103.x

Steriade M, Amzica F, Contreras D. Cortical and thalamic cellular correlates of electroencephalographic burst–suppression. Neurophysiology. 1994:90:1–16.

Sun X, Xue F, Wen J, Gao L, Li Y, Yang L, Cui H. Longitudinal Analysis of Sleep-Wake States in Neonatal Rats Subjected to Hypoxia-Ischemia. Nat Sci Sleep. 2022 Mar 1;14:335-46. https://doi.org/10.2147/NSS.S352035

Thömke F. Brand A, Weilemann S. The temporal dynamics of postanoxic burst–suppression EEG. Clin. Neurophysiol. 2002:19:24–31. https://doi.org/10.1097/00004691-200201000-00003

Thordstein, M. Löfgren N, Flisberg A, Bågenholm R, Lindecrantz K, Kjellmer I. Infraslow EEG activity in burst periods from post asphyctic full term neonates. Clin Neurophysiol. 2005:116:1501–06. https://doi.org/10.1016/j.clinph.2005.02.025.

Toet M. Hellström–Westas L, Groenendaal F, Eken P, de Vries LS. Amplitude integrated EEG 3 and 6 hours after birth in full term neonates with hypoxic–ischaemic encephalopathy. Arch. Dis. Child Fetal Neonatal Ed. 1999:81:19–23.

van Putten M. The N20 in post–anoxic coma: Are you listening? Clin. Neurophysiol. 2012:123:1460–4. https://doi.org/10.1016/j.clinph.2011.10.049

Vecchio F, Valeriani L, Buffo P, Scarpellini MG, Frisoni GB, Mecarelli O, Babiloni C, Rossini PM. Cortical sources of EEG rhythms in congestive heart failure and Alzheimer's disease. Inter. J. Psychophysiol. 2012:86:88–97. https://doi.org/10.1016/j.ijpsycho.2012.06.053

Walsh B, Murray D, Boylan G. The use of conventional EEG for the assessment of hypoxic ischaemic encephalopathy in the newborn: a review. Clin. Neurophysiol. 2011:122:1284-94. https://doi.org/10.1016/j.clinph.2011.03.032.

Watanabe K, Miyazaki S, Hara K, Hakamada S. Behavioral state cycles, background EEGs and prognosis of newborns with perinatal hypoxia. EEG Clin. Neurophysiol. 1980:49:618–25.

Wikström, S. Background aEEG/EEG measures in very preterm infants: Relation to physiology and outcome. Doctoral thesis. Uppsala. 2011. 74 p.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Azerbaijan Journal of Physiology

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...